
This document was intended to track all unit test cases carried out on
our code.

Incomplete Test A test which isn't implemented correctly
Passed Test The code currently passses this test
Failed Test A failed test needs to be addressed
Redundant Test A test for a removed peice of code

Test ID Test Case Context Test Description Test Data Expected Result Actual Result Notes

1.01 Retreive aircract position Aircraft.position
Testing the get function for the position
attribute testAircraft [0, 0, 0] [0, 0, 0]

1.02 Retreive aircraft name Aircraft.name
Testing the get function for the name
attribute testAircraft testAircraft testAircraft

1.03 Retreive aircraft origin Aircraft.originName
Testing the get function for the name of
the origin attribute of the aircraft testAircraft Berlin Berlin

1.04 Retreive aircraft destination Aircraft.destinationName
Testing the get function for the name of
the destination attribute of the aircraft testAircraft Dublin Dublin

1.05 Read if the plane has finished Aircraft.isFinished

Testing the get funtion for the variable
which reads TRUE if the aircraft has
finished testAircraft FALSE FALSE

1.06
Read if the plane is being manually
controlled

Aircraft.
isManuallyControlled

Testing the get function for the variable
that reads TRUE if the aircraft is in manual
control mode testAircraft FALSE FALSE

1.07 Retreive the speed of the aircraft Aircraft.speed
Testing the get function for the speed of
the aircraft testAircraft 20 20

1.08 Retreive the altitude state of the aircraft Aircraft.altitudeState
Calculating if the aircraft is acsending,
descending or stationary

testAircraft
1 1 1

1.09 Test if the aircraft is out of bounds Aircraft.outOfBounds
Calculating if the aircraft is out of the
visible airspace testAircraft TRUE TRUE

1.10 Setting the altitude state of the aircraft Aircraft.setAltitudeState
Setting the current altitude state of the
aircraft

testAircraft
1 1 1

2.01 Store co-ordinates as a vector Vector
Creating a new vector object by setting the
x, y and z co-ordinates [1.0, 1.1, 1.2]

vector.x = 1.0
vector.y = 1.1
vector.z = 1.2

vector.x = 1.0
vector.y = 1.1
vector.z = 1.2

2.02 Retreive co-ordinates from a vector
Vector.X, Vector.Y, Vector.
Z

Retreving the x, y and z co-ordinates from
a vector object [1.0, 1.1, 1.2]

vector.x = 1.0
vector.y = 1.1
vector.z = 1.2

vector.x = 1.0
vector.y = 1.1
vector.z = 1.2

2.03 Calculate magnitude of a vector Vector.magnitude
Calculating the magnitude of a vector from
the x, y and z values [1.0, 1.1, 1.2] 3 3

[12.0, 16.0, 21.0] 29 29

2.04 Test for vector equality Vector.equals
Test equality of the stored vector and an
input vector

[1.9, 2.2, 7.4]
[1.9, 2.2, 7.4] TRUE TRUE
[9, 4.2, 5.1]
[9, 4.2, 5.0] FALSE FALSE

2.05 Calculate magnitude squared of a vector Vector.magnitudeSquared
Calculating the square of the magnitude of
the vector [1.0, 2.0, 2.0] 9 9

[12.0, 16.0, 21.0] 841 841
2.06 Normalise vector Vector.normalise Converting the vector to a normalised form [1.0, 2.0, 2.0] [1/3, 2/3, 2/3] [1/3, 2/3, 2/3]

[1.0, 4.0, 8.0] [1/9, 4/9, 8/9] [1/9, 4/9, 8/9]

2.07 Scale a vector Vector.scaleBy Scaling the vector object by an input value
[1.0, 2.0, 3.0]
1 [1.0, 2.0, 3.0] [1.0, 2.0, 3.0]
[1.0, 2.0, 3.0]
-2 [-2.0, -4.0, -6.0] [-2.0, -4.0, -6.0]

2.08 Vector addition Vector.add Adding an input vector to the vector object
[2.0, 2.0, 4.0]
[1.0, 3.0, 2.0] [3.0, 4.0, 6.0] [3.0, 4.0, 6.0]
[6.0, 8.1, 16.0]
[1.0, 2.0, 3.0] [7.0, 10.1, 19.0] [7.0, 10.1, 19.0]

2.09 Vector subtraction Vector.sub
Subtracting an input vector from the vector
object

[2.0, 3.0, 4.0]
[1.0, 1.0, 2.0] [1.0, 2.0, 2.0] [1.0, 2.0, 2.0]
[14.0, 6, 100.0]
[1.0, 6.0, 0.0] [13.0, 6.0. 0.0] [13.0, 6.0. 0.0]

2.10 Angle between vectors Vector.angleBetween
Calculating the angle between the object
vector and an input bector

[1, 0, 0]
[0, 1, 0] π/2 π/2

3.01 Initialise score Score
Creating a new score object with default
score values

score.timePlayed = 0
score.flights = 0
score.manualTime = 0
score.timeViolated = 0
score.gameOvers = 0

score.timePlayed = 0
score.flights = 0
score.manualTime = 0
score.timeViolated = 0
score.gameOvers = 0

Many of these attributes will not be in
the release version

3.02
Retreive time played and successful
flights

Score.timePlayed
Score.flightsSuccessful
Score.timeViolated
Socre.timeManual
Score.gameOvers Retrieving the score data from the object

score.timePlayed = 0
score.flights = 0
score.manualTime = 0
score.timeViolated = 0
score.gameOvers = 0

score.timePlayed = 0
score.flights = 0
score.manualTime = 0
score.timeViolated = 0
score.gameOvers = 0

Many of these attributes will not be in
the release version

3.03 Adding time played Score.addTime
Adding time played to the current length of
session

6
4 9 9 Test consit of adding time in sequence
1000
127 1127 1127 Test consit of adding time in sequence

3.04 Adding time in manual control Score.addTimeManual
Adding time in manual mode to the current
total manual mode length

8
4 12 12 Function was not used in final release
14
88 102 102 Function was not used in final release

3.05 Adding seperation violation time Score.addTimeViolated
Adding seperation volated time to the
current value

10
16 26 26 Function was not used in final release
0
1 1 1 Function was not used in final release

3.06 Adding a successful flight Score.addFlight
Incrementing the number of successful
flights looped 10 times 10 10 Function was not used in final release

3.07 Adding a game over Score.addGameOver Incrementing the number of game overs looped 13 times 13 13 Function was not used in final release
looped 4 times 4 4 Function was not used in final release

3.08 Calculate score Score.calculate
Calculating the game score from the
stored score values

gameOvers = 5
successfulFlights = 9
timeViolated = 9
timeManual = 10
timePlayed = 1000 -3119 -3119 Function was not used in final release
gameOvers = 1
successfulFlights =100
timeViolated = 0
timeManual = 0
timePlayed = 1000 10000 10000 Function was not used in final release

4.01 Retreive waypoint position Waypoint.position
Retreiving the position of the waypoint
from the object [10,10,0] [10,10,0] [10,10,0]

4.02 Is mouse over waypoint Waypoint.isMouseOver
Testing if the cursor is positioned over the
waypoint

waypoint = [5,5]
mouse = [10,10] TRUE TRUE
waypoint = [5,5]
mouse = [25,25] FALSE FALSE

4.03 Test if entry/exit point Waypoint.isEntryOrExit
Testing if the waypoint object is an
entry/exit point entryOrExit = FALSE FALSE FALSE

entryOrExit = TRUE TRUE

4.04 Calculate cost Waypoint.getCost
Testing the calculation of the cost between
the a waypoint and the current waypoint.

[2, 4, FALSE]
[2, 2, TRUE] 2 2
[6, 15, FALSE]
[15, 15, TRUE] 9 9

4.05 Calculate cost between Waypoint.getCostBetween

Testing the calculation of the cost between
the current waypoint and another
waypoint.

[2, 4, FALSE]
[2, 2, TRUE] 2 2
[6, 15, FALSE]
[15, 15, TRUE] 9 9

Test Aircraft
The following is the test data used for
many of the Aircraft class tests
Name testAircraft
originName Berlin
destinationName Dublin
originWaypoint 100,100,True
destinationWaypoint 0,0 True
speed 10
waypointList 0, 0, True

100, 100, True
25, 75, False
75, 25, False
50, 50, False

Unit Testing


